Dans le cadre d'un projet collaboratif entre la DES/DDSD et la DRF/Irfu, une étude de faisabilité du potentiel de la muographie pour l'auscultation des réacteurs nucléaires a été initiée en 2017. Après une première phase d'évaluation réalisée par l’Irfu au moyen de modélisations numériques, des premières prises de données ont été réalisées sur le bloc réacteur G2, situé au CEA Marcoule et arrêté au début des années 80, à partir de février 2020. Ces mesures ont permis de démontrer le potentiel de la technique, en identifiant des différences entre la structure réelle du réacteur G2 et le modèle 3D créé à partir des plans originaux de l'installation. Ces premiers résultats démontrent l'intérêt de l'utilisation de la muographie dans l'assainissement et le démantèlement des installations nucléaires, une des priorités actuelles du CEA. Pour la suite du projet il est envisagé de réaliser une tomographie 3D du réacteur en combinant des images prises à différentes positions. Il pourrait alors s’agir de la première image 3D de l'intérieur d'un réacteur en démantèlement, sans avoir recours aux rayonnements ionisants artificiels, ajoutant ainsi un nouvel outil d’inspection à la palette existante.

Pour que les images produites par le futur IRM ne subissent des déformations ou d'artefacts, le champ magnétique généré par l'aimant Iseult doit être homogène à 0,5 PPM (parties par millions) autour du cerveau du patient. Pour répondre à ce challenge, il a fallu prévoir des moyens de « réglage » (en anglais « shimming » – calage) du champ afin de corriger tous les petits défauts qui découlent inévitablement de la fabrication. 5904 pièces de shim (petites pastilles de fer) ont ainsi été vissées sur leurs rails et installées à l'intérieur du tunnel de l'aimant. Cette première configuration a été testée le jeudi 9 Juillet 2020 en cartographiant son effet sur le champ magnétique d’Iseult à 3 T. Les résultats sont très encourageants car la première itération a permis de faire passer l’homogénéité du champ dans la zone utile de 138,8 PPM à 3,2 PPM (valeur extrapolée à 11,72 T à partir des mesures magnétiques à 3T).

L’aimant du projet Iseult, en installation à Neurospin (CEA Paris Saclay), a atteint son champ nominal de 11,7 teslas (T) le 18 juillet 2019. Il s’agit d’un record mondial pour un aimant IRM humain corps entier, qui vient couronner des années de R&D, à la pointe de l’innovation dans le domaine des aimants supraconducteurs. Au cours des prochains mois, les équipements nécessaires pour réaliser les images cérébrales seront installés autour de l’aimant ainsi que dans son tunnel central, pour en faire un scanner IRM humain capable de sonder le cerveau à des précisions jamais atteintes, au bénéfice de la recherche fondamentale, des sciences cognitives et du diagnostic des maladies neuro-dégénératives.

Dans sa version la plus courante, l’imagerie muonique est une technique intrinsèquement 2D : en effet les densités mesurées sont intégrées le long de la direction d’observation de l’instrument. En principe, une cartographie 3D peut tout de même être obtenue en combinant plusieurs projections, comme en imagerie médicale. Mais dans le cas de la muographie, le nombre de projections disponibles est généralement très réduit, à cause du temps d’acquisition nécessaire à chaque image. Un algorithme d’imagerie 3D vient d’être utilisé avec succès sur le télescope à muons TomoMu, dans le cadre d’une collaboration entre l’Université de Florence et l’Irfu. La structure 3D d’un objet test a été reconstruite avec seulement 3 prises de vue, grâce notamment à l’excellente résolution de l’instrument. Cette avancée très importante permet maintenant d’envisager l’étude de structures plus complexes, avec des applications variées depuis l’étude de réacteurs nucléaires en phase de démantèlement jusqu’à l’exploration des sols.

Au cœur des dernières innovations pour la détection de particules, l’Irfu a développé des télescopes à muons très performants réalisant des cartographies 2D en densité (ou « muographies ») d’une précision remarquable. Equivalent à un télescope optique qui permet de voir la matière éclairée par la lumière visible, un télescope à muons permet de sonder  l’intérieur de grandes structures denses grâce à ces particules élémentaires qui nous arrivent naturellement de l’atmosphère.  En juin 2016, une équipe de l’Irfu rejoint la mission ScanPyramids  en déployant  trois télescopes à muons autour de la pyramide de Kheops. Ils pointent alors vers l’arête Nord-Est de la pyramide, et plus précisément vers une encoche située à 150 m de distance où se cache une petite cavité d’environ 9m² déjà repérée par les égyptologues.  Le but de cette campagne de mesure est de valider les performances des télescopes en détectant cette cavité cachée 5 m sous l’arête et invisible depuis le sol.

Après plus de 60 jours de données et plus de 50 millions de muons enregistrés, le dispositif de l’Irfu a permis non seulement de retrouver la cavité attendue, mais de révéler une nouvelle cavité similaire à environ 105 m de hauteur.

 

 

Retour en haut