Le PEPR Suprafusion (Programme d'équipement prioritaire de recherche exploratoire), proposé par le CEA et le CNRS, est lauréat de la troisième vague d'appel à projets du plan France 2030. Ce financement de 50 millions d'euros permettra le développement des supraconducteurs à haute température afin de répondre aux défis énergétiques et sociétaux de demain, notamment avec une application dans le domaine de la fusion. Le programme repose sur 3 axes : le développement des briques technologiques du HTS (supraconducteur haute température), la démonstration à grande échelle de la faisabilité technologique et l’exploration des applications de rupture.
Le projet MADMAX, dont le lancement a eu lieu en novembre 2016, est mené par le Max Planck Institut für Physik en collaboration avec plusieurs instituts européens. Le projet a pour objectif la découverte d’axions d’une masse d’environ 100 µeV, candidats potentiels à la matière noire. Pour détecter ces axions, il est nécessaire de développer un détecteur spécifique composé d’un amplificateur de signal électromagnétique et d’un aimant proportionnel à la taille de l’amplificateur et délivrant un fort champ magnétique. Afin de valider les innovations dans la fabrication du conducteur de l’aimant, son concept de refroidissement et la détection du quench, un démonstrateur a été conçu, fabriqué, intégré et testé entre mars 2020 et août 2021. Il est dénommé MACQU pour MADMAX Coil for Quench Understanding. L’ensemble du design, allant du conducteur à la structure de supportage en passant par l’aimant MACQU, son écran thermique et les busbars, a été réalisé au CEA. Le démonstrateur, fabriqué par l’industriel Bilfinger Noell GmbH, est arrivé en mars 2021 et fut testé avec succès entre le 18 mai et le 27 août 2021. L’analyse des données maintenant terminée apporte les réponses souhaitées et ouvre de nouvelles pistes de travail inattendues. La preuve de faisabilité du concept de câble, de son refroidissement ainsi que de la détection du quench pour l’aimant MADMAX a été démontrée lors de ces essais.
L'objectif visé dans la construction de la réalisation de sources compactes de neutrons à base d’accélérateurs à fort courant est de permettre de réaliser, sur ces sources, des expériences de diffusion de neutrons, avec pratiquement la même qualité que celles réalisées auprès des lignes neutrons issues de réacteurs de recherche de type Orphée*.
Ces sources sont réalisées à partir d'un faisceau de protons de moyenne énergie (3-50 MeV) et haut courant (~ 100 mA) frappant une cible d’un matériau léger comme le béryllium, qui émet alors des neutrons. Pour être utilisable de manière routinière, la cible doit pouvoir résister sur de longues durées à une forte irradiation sans perte de performance.
Les équipes de l'Irfu (DACM, DEDIP, DIS, DPhN) et du LLB réunies ont réalisé une cible béryllium implantée en sortie de l'injecteur de protons à haute intensité - IPHI (3 MeV) à Saclay. Ils montrent qu'avec ce dispositif il est possible d'obtenir l'intensité de neutrons nécessaire pour réaliser une expérience de diffraction dans un temps raisonnable, démontrant la compétitivité d'une telle source pour la diffusion de neutrons par rapport aux réacteurs nucléaires actuels de petite et moyenne puissance.
*Ancien réacteur de recherche de Saclay, aujourd'hui fermé.
Un an et demi après la livraison du cryomodule prototype (CM00) à ESS, le premier cryomodule medium beta de série (CM01) vient à son tour d’arriver sur le site d’ESS. Celui-ci a quitté le CEA le 22 septembre 2020 pour un voyage de deux jours vers Lund en Suède. Les équipes de l’Irfu avaient au préalable validé les performances RF et cryogéniques de ce cryomodule. Il sera à nouveau testé sur le banc de test de ESS avant d’intégrer sa position finale dans le tunnel de l’accélérateur. C’est une première étape. A partir de l’année prochaine, ESS recevra ainsi en moyenne un cryomodule par mois pendant 3 ans.
Le 28 octobre 2014, le CEA signe un contrat avec le centre de recherche israélien de Soreq (SNRC) pour la réalisation d’un accélérateur nommé SARAF (Soreq Applied Research Accelerator Facility) par les équipes de l’Irfu. Cet accord se concrétise par des phases d’études préliminaires et détaillées sur une période de 18 mois (2015 et 2016) ouvrant vers une phase de construction, de tests et d’installation sur le site qui durera 6 ans.
Il s’agit de construire un accélérateur linéaire supraconducteur pouvant fournir des faisceaux de protons et de deutons d’énergie variable entre 5 et 40 MeV avec une intensité allant à terme jusqu’à 5mA. Cette installation est destinée à la recherche fondamentale et appliquée dans de nombreux domaines.
Le planning, associé à ce projet, comporte successivement la livraison et l’installation sur site puis les tests de trois sous-ensembles :
Après bobinage, la septième et dernière bobine de FRESCA2 a quitté Saclay en juin 2019 dans son moule de réaction, mettant fin à l’activité de l’Irfu sur ce projet démarré en 2009 en collaboration avec le CERN. Cette bobine de type 3-4 est une bobine de réserve, qui, après réaction, instrumentation et imprégnation au CERN, viendra rejoindre sa sœur de type 1-2 sur les étagères du CERN.
Lors d’une première étape, le dipôle FRESCA2, un aimant dipôle en Nb3Sn de 100 mm d’ouverture testé au CERN, avait atteint un champ de 13.3 T (cf. fait marquant du 20/09/2017). Une nouvelle série de tests en avril 2018, après modification du préchargement mécanique de l’aimant, avait permis au dipôle FRESCA2 d’atteindre 14,6 T à la température de 1.9 K, un nouveau record de champ pour un dipôle de cette ouverture. Lors de ces essais, la stabilité de son fonctionnement a été validée respectivement à 14,4 T et 1.9 K et à 13.6 T et 4,5 K. Le dipôle a été qualifié : il va pouvoir maintenant être utilisé comme une station d’essai pour accueillir, en particulier, les tests de petits aimants réalisés à partir de supraconducteur à haute température critique.
Après plus de 5 ans de développement dont 6 mois de travail d’intégration depuis les 12000 pièces détachées jusqu’à un cryomodule complet, le CEA-Irfu vient de valider les premières mesures de ce système complexe cryogénique au champ accélérateur ESS nominal de 17 MeV/m dans les 4 cavités accélératrices supraconductrices le composant.
Aux limites de technologies, c’est la première fois qu’un champ accélérateur aussi intense, maintenu sur des durées de pulse aussi longues et avec une puissance RF aussi importante, est mesuré dans des cavités supraconductrices installées dans un cryomodule.
Cette étape clé permet d’aborder la phase production des 30 cryomodules que la France doit livrer à cette infrastructure de recherche ESS, future source à neutrons opérationnel en 2023 en Suède. Cette intégration en série débutera dès le mois de janvier 2019 sous la maitrise d’œuvre de l’Irfu avec la contribution de l’entreprise B&S France et devra s’achever en 2022.
Un nouveau chantier s’ouvre aujourd’hui, vendredi 15 juin 2018, au LHC, le grand collisionneur de hadrons. Initié en 2011, ce projet vise à mettre en service d’ici à 2026 un LHC haute luminosité (HL-LHC) qui permettra d’augmenter le nombre de collisions protons-protons et de récolter davantage de données. La France contribue de manière importante à ce projet (à hauteur de 180M€, masse salariale incluse). Les équipes du CNRS et du CEA participent en particulier à la recherche et aux développements technologiques sur les aimants supraconducteurs ainsi qu’à la jouvence des détecteurs et de l’accélérateur. Côté français, ce sont ainsi plus de 400 scientifiques qui accompagnent le renouveau du plus grand et du plus puissant collisionneur de particules au monde.