25 novembre 2015

« Ne croyez pas ce que votre cœur et votre raison voient mais ce que vos yeux voient, » plaidait l’astrophysicien et prix Nobel de physique, Adam Riess, à propos de ses recherches. Mieux voir le cosmos pour mieux comprendre l’architecture des superamas de galaxies, est précisément le défi relevé par le Sedi/Lilas grâce à la mise au point du logiciel SDvision. Grâce à ses performances de visualisation 3D, le logiciel a contribué à l’identification d’une mini structure dont le bassin d’attraction est équilibré par Laniakea, Perseus-Pisces, et Coma,  trois grands superamas. Rencontre avec Arrowhead, nouvelle admise dans la cartographie du cosmos.

26 juin 2015

 

L’Observatoire de Paris, le CNRS, le CEA et la Région Île-de-France ont inauguré, le 24 juin 2015, la plateforme GAmma-ray Telescope Elements (GATE) sur le site de Meudon de l’Observatoire de Paris, pour l’exploration de l’Univers.

L’inauguration de cette plateforme représente une étape importante du projet de futur réseau de télescopes Cherenkov Telescope Array (CTA). Regroupant 31 pays, 200 instituts de recherche et plus de 1200 scientifiques, le programme international CTA devrait permettre de mieux comprendre les phénomènes extrêmes de l’Univers.

Dans ce contexte, l’initiative GATE, portée par l’Observatoire de Paris et cofinancée par la Région Île-de-France (appel d’offre SESAME), le CNRS et le CEA, a pour objectif l’étude de concepts et le développement de prototypes d’instruments nécessaires à la mise en place du réseau CTA.

Aujourd’hui, les instruments conçus dans le cadre de GATE sont terminés. Il s’agit notamment de prototypes d’éléments, télescopes et caméras, qui pourront constituer une partie de l’infrastructure CTA. Après tests et évaluations, la prochaine étape sera d’optimiser les prototypes, les performances, les coûts et les procédés d’industrialisation. S’en suivra la construction des « premiers de série » qui pourront être installés sur les deux sites de CTA à l’horizon 2017.

28 octobre 2015

L’expérience Edelweiss III inspecte la matière noire à travers ses agents les plus secrets : les Wimps. Armés de bolomètres ultra-sensibles installés au cœur du laboratoire souterrain de Modane, l'équipe de recherche traque le signal de cette hypothétique particule. Une nouvelle campagne de recherche, menée durant 8 mois, vise en particulier à tester des indications de signal WIMP potentiel autour de 10 GeV publiées par 4 autres expériences.

Résultat d'Edelweiss: pas de signal! Aucun des candidats, apparus entre 2010 et 2014, n’est recevable pour porter le titre de Wimp. Les campagnes suivantes permettront d'explorer le territoire encore inconnu des WIMPs de très basse masse, en deça de 10 GeV. Les résultats viennent d'être présentés à la conférence internationale TAUP 2015 (Topics in Astroparticle and Underground Physics).

 

10 septembre 2015

 

L’European Spallation Source (ESS), la source de neutrons la plus puissante au monde, se dote d’une structure légale pour faciliter la coopération entre ses 15 partenaires européens. Au titre de l’engagement de la France, le CNRS et le CEA participent à sa construction, l’achèvement de l'accélérateur en 2019 permettra la production des premiers faisceaux de neutrons. L'Irfu et l'IPN d'Orsay   contribuent à la conception et à la construction de plusieurs lots de l’accélérateur linéaire de protons.

 

Le communiqué de presse

02 novembre 2015

Les noyaux « exotiques » lancent le défi d’une description universelle de la structure nucléaire et soulèvent la question de l’origine de l’évolution de la structure en couches de noyaux. Une équipe de l’Irfu a développé le projet MINOS (Magic Number Off Stability) visant à répondre à ces questions. Un programme de physique a été établi en collaboration avec des équipes japonaises de RIKEN dont le RIBF (Radioactive Isotope Beam Factory) est l’accélérateur le plus performant mondialement pour produire des noyaux riches en neutrons à des énergies intermédiaires de plusieurs centaines de MeV. Les expériences avec le détecteur MINOS ont débutées en 2014 et leurs premiers résultats viennent d’être publiés dans Physical Review Letters couronnant 5 années d’efforts et ouvrant la voie à une moisson de résultats passionnants dans les années à venir.

02 décembre 2015

Un nouveau détecteur Micromegas vient d’être développé à l’Irfu : pour la première fois, la micro?grille et l’anode sont segmentées en pistes, dans des directions perpendiculaires. Ce détecteur offre ainsi une vraie structure 2D pour la reconstruction des trajectoires des particules chargées. De plus, ayant une masse très faible, il est parfaitement adapté à des mesures en faisceau de neutrons moyennant l’utilisation d’un convertisseur. Le détecteur a été testé avec succès et est dorénavant utilisé comme profileur transparent du faisceau de neutrons de l’expérience n_TOF au CERN.

 

Retour en haut