1 sujet /DAp/LDE3

Dernière mise à jour :


 

Disequilibrium chemistry of exoplanets’ high-metallicity atmospheres in JWST times

SL-DRF-25-0451

Research field : Astrophysics
Location :

Direction d’Astrophysique (DAP)

Laboratoire de dynamique des étoiles des (Exo) planètes et de leur environnement (LDE3)

Saclay

Contact :

Antonio Garcia Muñoz

Starting date :

Contact :

Antonio Garcia Muñoz
CEA - DRF/IRFU DAp/LDE3


Thesis supervisor :

Antonio Garcia Muñoz
CEA - DRF/IRFU DAp/LDE3


In little more than two years of scientific operations, JWST has revolutionized our understanding of exoplanets and their atmospheres. The ARIEL space mission, to be launched in 2029, will soon contribute to this revolution. A main finding that has been enabled by the exquisite quality of the JWST data is that exoplanet atmospheres are in chemical disequilibrium. A full treatment of disequilibrium is complex, especially when the atmospheres are metal-rich, i.e. when they contain in significant abundances elements other than hydrogen and helium. In a first step, our project will numerically investigate the extent of chemical disequilibrium in the atmospheres of JWST targets suspected to have metal-rich atmospheres. We will use towards that end an in-house photochemical model. In a second step, our project will explore the effect of super-thermal chemistry as a driver of chemical disequilibrium. This will offer previously-unexplored insight into the chemistry of metal-rich atmospheres, with the potential to shed new light into the chemical and evolutionary paths of low-mass exoplanets.

• Astrophysics

 

Retour en haut