Oct 08, 2024
The New Small Wheels (NSW) are the most important project of the ATLAS Phase-1 upgrade towards the High-Luminosity LHC. IRFU has been heavily involved in the design, construction, integration, commissioning and operations of the NSW. The NSW combine two complementary gas detector technologies: sTGC (small-strip Thin Gap Chambers), and Micromegas (Micro-Mesh Gaseous Structure). The latter was pioneered at CEA-Saclay in collaboration with CERN in the 1990’s.
Jul 19, 2024
Tilepy is a cutting-edge platform designed to optimize and facilitate the scheduling of follow-up observations of multi-messenger events[1]. Developed over the last eight years by a dedicated team of researchers at IRFU, led by Fabian Schussler, the team includes former PhD students Monica Seglar-Arroyo and Halim Ashkar, who began their contributions during their doctoral studies, as well as postdoc Mathieu de Bony de Lavergne.
May 30, 2024
The NECTAr chip, developed at IRFU and at the heart of the NectarCAM camera's eyes, is capable of operating in ‘ping-pong mode
In the quest to unravel the mysteries of the Universe, astrophysicists and engineers are pushing the boundaries of technology to capture the fleeting signals of cosmic events. Leading this big effort is the Cherenkov Telescope Array Observatory (CTAO), a global initiative to build the world's most advanced ground-based gamma-ray observatory.
Feb 15, 2024
Sara Bolognesi, a physicist in Irfu's particle physics department, has been awarded the CNRS 2024 silver medal in the particle physics speciality. This medal rewards researchers for the originality, quality and importance of their work, which is recognised internationally and contributes to the reputation of French research. 
Feb 12, 2024
With more than 5,000 scientists, engineers, technicians, administrators and students, CMS is one of the largest scientific collaborations in the world. With members from more than 240 institutes and universities in nearly 50 countries around the world, the collaboration exploits the data provided by the CMS experiment, one of the two giant general-purpose detectors installed along the circumference of the LHC, CERN's Large Hadron Collider.
Feb 02, 2024
On January 17, the T2K collaboration announced the launch of the second phase of its experiment, as stated in a press release. This phase will exploit an upgrade of the beam, whose nominal power has been increased from 450 kW to 710 kW, with the aim of reaching 1.2 MW by 2027. An improved version of the experiment's near detector ND280 is also being implemented, incorporating new time-projection chambers using resistive-Micromegas technology designed and developed by the IRFU teams.
Jan 25, 2024
ESA's Scientific Program Committee has adopted the LISA mission, giving the go-ahead for construction of the instrument and satellites. For the first time, LISA will observe the Universe through gravitational waves from space.
ISA (Laser Interferometer Space Antenna), the European Space Agency's large-scale mission to explore the Universe by observing the many sources of gravitational waves, was adopted on Thursday January 25 by ESA's Scientific Programs Committee, meaning that the concept and technology are recognized as sufficiently advanced for construction of the instrument and satellites to begin. Launch is scheduled for 2035.
Jan 22, 2024
A comprehensive revision of the summation method lays new and solid foundations for the calculation of antineutrino spectra emitted by a nuclear reactor. This major advance sheds new light on the origin of the reactor antineutrino anomalies, and will be
Supported by CEA's "digital simulation" cross-disciplinary program, Irfu, the Laboratoire National Henri Becquerel of DRT and the Service d'Étude des Réacteurs et de Mathématiques Appliquées of DES teamed up to carry out a thorough review of calculations of antineutrino spectra from nuclear reactors.
Nov 15, 2023
The collaboration has finalised a detailed background model offering the lowest index ever obtained, and has also adopted a new technology: NTL light detectors, which are much more effective at rejecting background noise.
Neutrino oscillations have confirmed that these mysterious particles have mass, contradicting the predictions of the Standard Model. The DPhP group at CEA/IRFU is seeking to solve this mystery by observing the very rare double-beta decay without neutrino emission of the Mo-100 nucleus using scintillating bolometers. Following the CUPID-Mo demonstration experiment at the Modane underground laboratory, the group has finalised a detailed background model that offers high precision for studying the 2v2β decay.
Nov 07, 2023
This series of five images demonstrates the satellite's exceptional performance for its cosmological mission!
To reveal the influence of the dark components of the Universe, over the next six years Euclid will be observing the shapes, distances and movements of billions of galaxies. This mapping will cover periods going back to the last 10 billion years of cosmic history, in order to gain a better understanding of where, when and how dark energy and matter - two key components of the universe that are still a mystery - act.
Jul 24, 2023
A model based on the concept of quantum measurement provides a new approach to calculate diffraction. The predictions of wave optics and the quantum model are significantly different at large angles.
A scientist from IRFU published an article in the Physical Review A presenting a diffraction model based on the concept of quantum measurement [1]. This model represents a new approach because the amplitude of the diffracted wave is usually calculated using classical methods of wave optics.
Jun 28, 2023
The GBAR collaboration, to which the IRFU makes a major contribution, presented the results of its first data collection at CERN at the end of 2022 at the Moriond conferences in March 2023. For the first time, it observed the production of anti-hydrogen atoms resulting from the interaction of a beam of antiprotons supplied by CERN's Antiproton Decelerator (AD) and decelerated to an energy of 6 keV, with a cloud of positronium produced locally in the experiment.
Jun 12, 2023
To study dark energy, the large Dark Energy Spectroscopic Instrument (DESI) will map over 40 million galaxies. Today, DESI has released its first data and is publishing 15 papers on the scientific study of these data.
The Universe is immensely big, and getting bigger all the time. To study dark energy, the mysterious force behind the accelerating expansion of our Universe, scientists are using the large Dark Energy Spectroscopic Instrument (DESI) survey to map over 40 million galaxies, quasars and stars. Today, the collaboration has released its first batch of data, with nearly 2 million astrophysical objects for researchers to study.
May 11, 2023
On October 9, 2022, at 13:16 and 59.99 seconds, a gamma-ray burst (GRB) dazzled almost all the X-ray and gamma ray detectors available at the time. Since their discovery, multi-wavelength telescopes in space and on the ground have continuously monitored these events. This outburst, named GRB221009A, shook the world community of astrophysicists, who have since been analysing it to understand the physical phenomena that triggered this most intense burst of energy in our history.
Mar 24, 2023
The ATLAS collaboration announced at the Moriond conference the observation of simultaneous production of four top quarks. This is one of the rarest and heaviest processes ever observed at the Large Hadron Collider (LHC). This measurement, coordinated by IRFU, allows to test the Standard Model of particle physics in its most complex predictions. Link to the ATLAS collaboration publication
Jan 23, 2023
Reactor antineutrino anomalies are a decade-long puzzle in neutrino physics. They are manifested by deviations of the order of a few percent between measurements and predictions. These deviations have been observed in the number of antineutrinos measured by more than a dozen experiments at nuclear reactors, and in the shape of the kinetic energy distributions by the seven most recent ones.
Jan 12, 2023
The final results of the Stereo experiment have just been published in the journal Nature. A record of precision is established for the spectrum of neutrinos emitted by the fission of 235U, measured between 9 and 11m distance from the ILL reactor core in Grenoble. The hypothesis of a sterile neutrino to explain the reactor neutrino anomaly is rejected. The quality of these direct neutrino measurements now surpasses that of the underlying nuclear data describing the beta decays of fission products.
Nov 28, 2022
The European Research Council has just announced the names of the winners of the Starting Grant. This 2022 edition rewards three CEA researchers for their work in the fields of neuroscience, particle physics and physics of matter. Anastasiia Zolotarova is the leader of the TINY (Two Isotopes for Neutrinoless double beta decaY search) project at IRFU.
Jul 22, 2022
The discovery of the Higgs boson in 2012 by the ATLAS and CMS experiments at CERN opened a phase of precision measurements of the properties of the Higgs boson, the keystone of the Standard Model (SM) of particle physics. In particular, the study of the Higgs boson pair production (HH) allows a parameter called Higgs boson self-coupling, the last one of the SM not yet measured, to be determined. This measurement provides a unique test of the mechanism that explains how particles acquire mass in the SM.
Jul 02, 2022
The analysis on data recorded in 2019, led by an IRFU physicist, on relic neutrinos improves on previous limits by two orders of magnitude.
The cosmic background neutrino is one of the predictions of the standard cosmological model, but it has never been directly observed. These so-called "relic neutrinos" could be captured on a radioactive nucleus like tritium. The resulting capture rate depends on the local density of relic neutrinos. Since massive neutrinos get caught by the gravitational potential of our galaxy and cluster locally, a modest local overdensity of relic neutrinos should exist on Earth.
May 03, 2022
The KATRIN collaboration has just recently reported a new upper limit of 0.8 eV/c2 on the mass of neutrinos. The KATRIN spectrometer also has a strong potential to search for new, so-called "sterile" neutrinos, based on a fine analysis of the tritium beta decay spectrum. The collaboration has just published its new results in Physical Review D based on the first two data campaigns acquired in 2019.
Apr 11, 2022
On February 12, 2022, the ANTARES neutrino telescope (Astronomy with a Neutrino Telescope and Abyss environmental RESearch) put an end to its data taking started in 2007. During 15 years, thousands of neutrinos, precious elusive particles witnesses of the cataclysmic phenomena of the Universe, were detected at 2500 m in the Mediterranean abyss.
Mar 10, 2022
IRFU scientists and the H.E.S.S. collaboration observe time-dependent particle acceleration in our Galaxy for the first time. Novae are powerful eruptions on the surface of a white dwarf in a binary star system, in which a larger star and a smaller star orbit each other. A nova creates a shock wave that tears through the surrounding medium, pulling particles with it and accelerating them to extreme energies. The H.E.S.S.
Feb 14, 2022
KATRIN has just crossed a symbolic threshold and reveals a new upper limit!
The KATRIN (KArlsruhe TRItium Neutrino Experiment) located at the Karlsruhe Institute of Technology (KIT) has just crossed a symbolic threshold. In a paper published in the prestigious journal Nature Physics, the collaboration reveals a new upper limit of 0.8 eV/c^2 for the mass of neutrinos. This result is of fundamental interest for both particle physics and cosmology.
Feb 10, 2022
At Irfu, neutrino physics is studied using different sources such as reactors, accelerators and radioactive sources. Irfu teams have been engaged for several decades in a long quest to study the neutrino in all its aspects, to understand its place in the Standard Model of particle physics and even more, but also its contribution to the evolution of the Universe since its first moments.
Sep 21, 2021
After three years of reflection and development, the "Astro-Colibri" application has just been launched. This digital interface, created by researchers at Irfu/DPhP, aims to make information on transient and multi-messenger phenomena easily accessible in real time. The need to react quickly to the most violent explosions in the universe and the large amount of information provided by the global network of observatories requires new approaches and new tools.
Jul 23, 2021
Space-based experiments such as the Fermi satellite's Large Area (LAT), which detects gamma rays above 100 MeV, reveal a population of sources with no astrophysical counterpart at other wavelengths. Some of these have the characteristics required to be "dark matter subhalo" candidates predicted by cosmological simulations to populate the Milky Way halo. The range of dark matter candidates with masses below a few hundred GeV are already excluded by Fermi observations.
Jun 28, 2021
As part of the luminosity increase of the Large Hadron Collider (LHC), the first phase of the ATLAS experiment upgrade is coming to an end, before a restart planned for early 2022. To meet the requirements of physics in a highly radiative environment with a high particle flux, the two internal wheels of the muon spectrometer will be replaced by new devices: the New Small Wheels (NSW).
Jun 04, 2021
On 29 August 2019, scientists from the H.E.S.S. collaboration recorded one of the brightest cosmic explosions ever observed in the Universe. This gamma-ray burst emitted the most energetic photons ever detected in this type of event. Under the direction of Irfu researchers, the observations continued for several days. The analysis of the data collected calls into question the origin of the rays produced during the explosion.
May 17, 2021
After a particularly successful first campaign of tests and measurements, the Dark Energy Spectroscopic Instrument (DESI) has just successfully started its 5-year observing program.
After a particularly successful first campaign of tests and measurements, the Dark Energy Spectroscopic Instrument (DESI) has just successfully started its 5-year observing program. The international collaboration, under the lead of Berkeley Lab, has the ambitious goal to carry out the largest survey of galaxies and quasars. It will be used to draw the most accurate 3D map of the Universe and to elucidate the mystery of "dark energy".

 

Retour en haut