1 sujet /DPhN/LENA

Dernière mise à jour : 09-10-2020


 

INVESTIGATION OF THE NUCLEAR TWO-PHOTON DECAY IN SWIFT FULLY STRIPPED HEAVY IONS

SL-DRF-21-0139

Research field : Nuclear physics
Location :

Service de Physique Nucléaire (DPhN)

Laboratoire études du noyau atomique (LENA) (LENA)

Saclay

Contact :

Wolfram KORTEN

Starting date : 01-10-2021

Contact :

Wolfram KORTEN
CEA - DRF/IRFU/DPhN/LENA

+33169084272

Thesis supervisor :

Wolfram KORTEN
CEA - DRF/IRFU/DPhN/LENA

+33169084272

Personal web page : https://www.researchgate.net/profile/Wolfram_Korten

Laboratory link : http://irfu.cea.fr/dphn/Phocea/Vie_des_labos/Ast/ast_sstheme.php?id_ast=293

More : https://www.gsi.de/en/work/research/appamml/atomic_physics/experimental_facilities/esr.htm

The nuclear two-photon, or double-gamma decay is a rare decay mode in atomic nuclei whereby a nucleus in an excited state emits two gamma rays simultaneously. Even-even nuclei with a first excited 0+ state are favorable cases to search for a double-gamma decay branch, since the emission of a single gamma ray is strictly forbidden for 0+ ? 0+ transitions by angular momentum conservation. The double-gamma decay still remains a very small decay branch (<1E-4) competing with the dominant (first-order) decay modes of atomic internal-conversion electrons (ICE) or internal positron-electron (e+-e-) pair creation (IPC). Therefore we will make use of a new technique to search for the double-gamma decay in bare (fully-stripped) ions, which are available at the GSI facility in Darmstadt, Germany. The basic idea of our experiment is to produce, select and store exotic nuclei in their excited 0+ state in the GSI storage ring (ESR). For neutral atoms the excited 0+ state is a rather short-lived isomeric state with a lifetime of the order of a few tens to hundreds of nanoseconds. At relativistic energies available at GSI, however, all ions are fully stripped of their atomic electrons and decay by ICE emission is hence not possible. If the state of interest is located below the pair creation threshold the IPC process is not possible either. Consequently, bare nuclei are trapped in a long-lived isomeric state, which can only decay by double-gamma emission to the ground state. The decay of the isomers would be identified by so-called time-resolved Schottky Mass Spectroscopy. This method allows to distinguish the isomer and the ground state state by their (very slightly) different revolution time in the ESR, and to observe the disappearance of the isomer peak in the mass spectrum with a characteristic decay time. An experiment to search for the double-gamma decay in 72Ge and 70Se has already been accepted by the GSI Programme Committee and should be realised in 2021/22.

• Nuclear physics

 

Retour en haut