Highlights 2018

November 2018

08-11-2018
Outstanding results from this Japanese X-rays observatory
Despite a short period of activity, the japanese space agency (Jaxa) Hitomi satellite has shown its full potential by delivering relevant information’s on several celestial objects.
07-11-2018
A prototype of the MXT camera arrived at the CNES in Toulouse on 25 October 2018. This is the Structural and Thermal Model (STM), which will be integrated into the telescope that will be sent to China to be mounted on the SVOM satellite Qualification Model. The objective of this model is to validate the thermo-mechanical design of the camera. It also makes it possible to check the manufacturing and assembly capacity of the various components, which represent more than 1,000 elements.

October 2018

10-10-2018
What is the mass of neutrinos? To answer this fundamental question, the KATRIN experiment was designed and built by an international collaboration at the Karlsruhe Institute of Technology. On June 11, 2018, an international symposium marked the beginning of data acquisition. The first electron spectra from tritium decay have been analyzed with an analysis chain developed at IRFU. Everything conforms to the required specifications and the first long data taking campaign for physics can start.
01-10-2018
Impressing results from a large X-ray catalog of galaxy clusters
Using the ESA's XMM-Newton observatory, an international team, led by Marguerite Pierre of the Astrophysics Department of CEA-Irfu, has revealed the latest results of the XXL survey, the largest observation program X-ray produced to date by the XMM satellite. The second batch of data just published in a special issue of the journal Astronomy & Astrophysics, includes information on 365 galaxy clusters and 26,000 active galactic nuclei (AGN).

September 2018

26-09-2018
X-ray photons were detected for the first time in late August 2018 with an engineering model of the SVOM MXT focal plane. This is an important step towards the validation of the design of the detection chain. The MXT telescope, for Microchannel X-ray Telescope, will be flown on board the SVOM satellite, a collaborative project between France (CNES) and China (CAS, CNSA) to study gamma-ray bursts. It aims at detecting soft X-rays (0.
25-09-2018
The first test campaign of the NOUGAT high field magnet was successfully carried out at the CNRS LNCMI Grenoble. This laboratory wishes to build a 30-tesla magnet by assembling a resistive magnet from LNCMI and a superconducting magnet designed by IRFU based on high temperature superconducting materials. To date, the field reached 20.8 T, including 12.8 T generated by the superconducting magnet alone.
21-09-2018
The first triplet of superconducting multipoles of the S3 Super Separator Spectrometer arrived at Ganil on August 29, 2018. S3 is one of the experiment rooms of the Spiral2 facility. The magnet, with a mass of 2.8 tonnes, is 1.8 m long and almost as high. This innovative type of magnet is very compact despite the number of optical functions it can generate (quadrupole, sextupole, octupole and dipole). It is the first of a series of seven to be delivered to the Ganil.
 

August 2018

31-08-2018
In an article published in August 2018 in the journal Nature [1], the CLAS collaboration of Jefferson Lab (USA) reports an extensive study on short-range correlations between nucleons in different nuclei. The conclusion goes against intuition, indicating that the greater the ratio of neutrons to protons in a nucleus, the greater the speed of protons relative to neutrons.
 

July 2018

27-07-2018
GANIL (Grand accélérateur national d'ions lourds) is carrying out its 2018 experimental campaign from April to July. During the four months of operation, experiments in nuclear physics, atomic physics and materials science will be conducted by research teams from all around the world. Industrial users will also be welcomed at GANIL. During this period, the GANIL accelerators will operate 24 hours a day, 7 days a week.
13-07-2018
A hundred years old mystery might get resolved with the detection of neutrinos by the IceCube collaboration coming from a known active black hole. Irfu, which coordinate those observations with the H.E.S.S. telescope, did not detect anything for now but the multi-messenger astronomy has just begun…

June 2018

19-06-2018
The ATLAS and CMS collaborations, involving teams from CEA/IRFU and CNRS/IN2P3, announced on 4 June 2018 at the LHCP conference the direct observation of the coupling of the quark top to the Higgs boson. Studying the interaction between the Higgs boson and the heaviest elementary particle known, the quark top, is a way of investigating the effects of new physics, which must take over from the standard model.
18-06-2018
A new project is opening today, Friday, June 15, 2018, at the LHC, the large Hadron Collider. Initiated in 2011, this project aims to bring into service by 2026 a high-luminosity LHC (HL-LHC) that will increase the number of proton-proton collisions and collect more data. France contributes significantly to this project (up to € 180 million, including payroll).

May 2018

23-05-2018
The European Spatial Agency retains the mission of exploration of galaxies
The SPICA infrared space telescope has been shortlisted by the European Space Agency (ESA) to participate in the final competition which will see in September 2021 the choice of the next mission of medium size ESA (M5 mission). SPICA is a large infrared telescope (diameter 2.5 m) fully cooled to a temperature of only a few degrees above absolute zero.
22-05-2018
New statistical methods reveal the finest details of the Universe
A team led by University College London (UCL), in collaboration with the Astrophysics Department of CEA-Irfu, has significantly improved the analysis of dark matter maps in the Universe with new methods of data analysis. The maps produced by this analysis demonstrate the power of these new innovative methods for analyzing future large data sets such as those expected from the upcoming EUCLID cosmological mission. These results are published in the MNRAS journal.
18-05-2018
In ultra-relativistic heavy ion collisions at CERN's LHC accelerator, a new state of matter is formed: the quark-gluon plasma (QGP). It is a kind of very dense and hot "soup" containing only the most elementary constituents of matter. A few microseconds after the Big Bang, the Universe would have passed through this state. Because of the interactions between its constituents, the QGP flows like a fluid.
15-05-2018
Dark matter constitutes about 85% of the total matter content of the Universe. However, its nature is still unknown. The H.E.S.S. observatory located in Namibia scrutinizes the central region of our Galaxy to search for mono-energetic gamma rays from the collision of hypothetical WIMPs, primary elementary particles that are among the leading candidates for dark matter. The search carried out with 10 years of observations of the center of our galaxy with phase 1 of H.E.S.S.

April 2018

30-04-2018
The laws of the birth of stars questioned
An international team led by researchers from the CNRS, Grenoble Alpes University and the Astrophysical Department /AIM Laboratory of CEA-Irfu suggests a radical modification on our ideas on the formation of stars. The accuracy of observations provided by the Atacama Large Millimeter Array (ALMA) in Chile has made it possible to measure the quantity of massive star-forming cores in a very active far-away region of our galaxy, and thus to show that their proportion is higher than expected.
19-04-2018
The mass distribution of the different stars formed from a collapsing gas cloud has just been successfully reproduced by two researchers from the Astrophysics Department/AIM Laboratory of CEA-Irfu. The collapse of a gas cloud of 1000 solar mass has been reconstructed thanks to numerical simulations, varying the density and the influence of turbulence.
09-04-2018
The HESS international collaboration, to which CNRS and CEA contribute, has published the results of fifteen years of gamma ray observations of the Milky Way. Its telescopes installed in Namibia have studied populations of pulsar wind nebulae and supernova remnants, as well as microquasars, never before detected in gamma rays. These studies are supplemented by precise measurements such as those of the diffuse emission at the center of our Galaxy.
03-04-2018
Detection by ALMA of polarized dust emission in the protostar B335
An international team led by the Department of Astrophysics/AIM Laboratory of CEA-Irfu has just shown for the first time that the magnetic field plays a fundamental role in the collapse of proto-stars. Based on observations from the Atacama Large Millimeter Array (ALMA) in Chile, researchers measured the polarization of dust in the B335 protostar. This polarization, emission of light in a preferred direction, results from the alignment of the dust grains under the influence of the magnetic field.

February 2018

22-02-2018
The very first moments of a star explosion
An unprecedented observation of a supernova, an explosion of a massive star, was captured in its early days by an amateur astronomer, at the exact moment when the supernova became visible in the sky.
08-02-2018
A theoretical breakthrough paves the way for anticipation of solar storms
A single phenomenon could control all solar flares. This is what researchers from the Ecole Polytechnique, CNRS, CEA-Irfu and Inria have just proposed in an article in the front page of the journal Nature on February 8, 2018. They highlighted the presence of a reinforced "cage" in which a "magnetic cord" develops, an entanglement of twisted magnetic lines of force at the origin of the solar flares.
05-02-2018
A galactic cohabitation more hectic than expected
The MegaCam camera developed at CEA-Irfu has revealed previously unsuspected structures within the famous Stephan Quintet, a spectacular combination of five galaxies. The discovery of a very large red halo, consisting of old stars, centered on one of the elliptical galaxies, NGC 7317, shows that the group of galaxies is still in very strong interaction, an aspect totally ignored in previous studies.
 

January 2018

19-01-2018
Giant galaxies that no longer form stars have 100 times more gas than expected.
By succeeding for the first time to analyze the light of nearly 1000 very distant elliptical galaxies, more than 10 billions light-years away, a team of researchers including three astrophysicists from the Astrophysics Department of CEA-Irfu has just revealed that these galaxies of the beginning of the universe contain a lot of gas but do not form stars. A real enigma that challenges our understanding of the evolution of these giant galaxies.
03-01-2018
An interactive video has made it possible to reconstruct the trajectories of 1,400 galaxies, including the Milky Way, over distances reaching up to 100 million light years.

 

Retour en haut