The birth spin of a neutron star is a key parameter to better understand the nature of its progenitor as well as the dynamical processes at play during the collapse of a massive star. However, the distribution of initial pulsar spins is poorly known. A study led by R. Kazeroni from SAP/CEA and his collaborators, using numerical simulations, emphasized the efficiency of a hydrodynamic instability named “SASI” to impart a rotational velocity to the neutron star. Surprisingly, the simulations show that, in some cases, the direction of rotation of the compact object is opposite to the perturbation which triggers the rotation. These results are published in the journal Monthly Notices of the Royal Astronomical Society.