Reaction studies with Relativistic Radioactive Beams
Goals of the experiment    The R3B experiment is part of the FAIR project (Facility for Antiproton and Ion Research, http://www.gsi.de/fair) to be built at GSI (Darmstadt, Germany). The FAIR project gathers different physics around a common facility: exotic nuclei at low and high energy, hadronic physics with proton – antiproton collisions, relativistic heavy-ion collisions (a few 10 GeV per nucleon), plasma physics and atomic physics.

COCOTIER

R3B
AGATA
AGATA (Advanced Gamma-ray Tracking Array) is a new generation high-resolution γ-ray spectrometer providing unprecedented Doppler-correction capabilities thanks to a combination of fine detector segmentation, efficient pulse-shape analysis algorithms, and implementation of an innovative γ-ray tracking concept.  
Project context The BTD project was developed in the framework of experiments aiming at the spectroscopy studies of radioactive nuclei using gamma-radiation and light particles in GANIL, mainly with SPIRAL and then SPIRAL2 beams. The purpose of these experiments is to study the structure of exotic nuclei in order to better understand the interactions that bind protons and neutrons and their reactions to different excitation modes (temperature, spin...).
BTD (Beam Tracking Detector)
CHyMENE
A thin cryogenic target for the studies of exotic nuclei
The CHyMENE project (Cible d'Hydrogène Mince pour l'Etude des Noyaux Exotiques - a thin cryogenic target for the studies of exotic nuclei) is part of the instrumentation necessary for the exploitation of the low energy beams (~ 5 to 25 MeV/n), such as SPIRAL2 beams. The aim is to develop a thin cryogenic target of pure hydrogen (H2 or D2), the characteristics of which will be well adapted to the conditions of future direct reaction experiments.
Scientific Issues and Project Framework The MINOS project aims at performing the spectroscopy of very exotic nuclei produced by fragmentation at the radioactive ion beam facilities such as RIKEN or GSI / FAIR. The structure of the targeted atomic nuclei should allow us to bring strong constraints on the nuclear interaction acting between nucleons in the nucleus.
MINOS
MUSETT
MUSETT: A segmented Si array for Recoil-Decay-Tagging studies at VAMOS
A new segmented silicon-array called MUSETT has been built for the study of heavy elements using the Recoil-Decay-Tagging technique. MUSETT is located at the focal plane of the VAMOS spectrometer at GANIL and is used in conjunction with a gamma-ray array at the target position. This device consists of four 10x10 cm2 Si detectors each, to obtain a total detection area of  40 x 10 cm2.  
Structure and spectroscopy via direct reactions.
Program: Nuclear matter in extreme states /Nuclear structure /  exotic nuclei Objectives The goals of this experimental program is to study the structure of unstable short-lived very-neutron-rich or neutron-deficient nuclei. These nuclei far from the valley of stability are chosen for the (expected) unusual properties: neutron halo, neutron-skin, new shell effects compared to what is known for stable nuclei or close to the stability.
MUST2-Reactions
S3: Super Separator Spectrometer
A spectrometer for the very high intensity stable beams of SPIRAL2
The future superconducting linear accelerator of Spiral2 will provide very high intensity of stable ions beams. They can be used to produce nuclei with very low cross sections, like superheavy elements or neutron deficient nuclei close to the limit of stability. S3 has been designed to handle these intense beams and select the rare nuclei of interest among the majority of contaminants, to identify and study them.
Spectroscopy and Identification of Rare Isotopes Using S3
The high-intensity stable beams of the superconducting linear accelerator of the SPIRAL2 facility at GANIL coupled with the Super Separator Spectrometer (S3) and a high-performance focal-plane spectrometer will open new horizons for the research in the domains of rare nuclei and low cross-section phenomena at the limit of nuclear stability.
SIRIUS

 

Retour en haut