Most of the content of the Universe, about 70%, is dominated by an energetic component that is neither matter nor radiation: dark energy. This mysterious component, first observed in 1998 with supernovae, revolutionized our vision of the evolution of the Universe and is one of the major discoveries of the end of the 20th century.  A characteristic scale of about 500 million light-years, acting as a "standard meter", is present in the distribution of matter on a cosmic scale.
CTA (Cherenkov Telescope Array)
A new generation observatory to explore the high energy Universe. Une nouvelle génération d'observatoire pour explorer l'Univers à haute énergie.
Objectives   The goal of Edelweiss is to detect the dark matter of our Galaxy through its interactions in detectors operated in underground laboratory. The EROS experiment, searching for massive compact objects in our galaxy, showed that at most 7 % of our local missing mass could be accounted for by such objects, that is by ordinary matter.
Exploring the High Energy gamma ray sky
H.E.S.S.   Exploring the High Energy gamma ray sky H.E.S.S   stands for "High Energy Stereoscopic System". This telescope system been designed and built by a large international collaboration which includes the DAPNIA as a member. This instrument is dedicated to the observation of high energy gamma ray sources with energies above a few tens of GeV.
  Megacam   MegaCam A major instrument at the CFHT observatory (Canada-France-Hawaii Telescope) The MegaCam camera was developed for the prime focus of the 3.6m diameter Canada-France-Hawaii Telescope (CFHT), on the summit of the Mauna Kea volcano, at an altitude of 4200m on the Big Island of Hawaii (USA).
SNLS : SuperNova Legacy Survey
SNLS aimed at detecting type Ia supernovae at high redshift for cosmological studies. It belongs to the second generation of experiments in that field, launched after the unexpected discovery of the late acceleration of the Universe expansion rate by the first programs of type Ia supernovae at the end of the1990s. SNLS used the Canada-France-Hawaii telescope (CFHT) of 3.6 m located on the Mauna Kea mountain in Hawaii. It was equipped with MegaCam, the large field CCD camera designed and built at Irfu.


Retour en haut