1 sujet IRFU

Dernière mise à jour :


««

• Instrumentation

 

Development of a ML-based analysis framework for fast characterization of nuclear waste containers by muon tomography

SL-DRF-25-0409

Research field : Instrumentation
Location :

Département d’Electronique, des Détecteurs et d’Informatique pour la physique (DEDIP)

DÉtecteurs: PHYsique et Simulation

Saclay

Contact :

Hector GOMEZ

David ATTIÉ

Starting date : 01-10-2025

Contact :

Hector GOMEZ
CEA - DRF/IRFU/DEDIP/DEPHYS

0169086380

Thesis supervisor :

David ATTIÉ
CEA - DRF/IRFU/DEDIP/DEPHYS

(+33)(0)1 69 08 11 14

Laboratory link : https://irfu.cea.fr/Phocea/Vie_des_labos/News/index.php?id_news=3388

More : https://irfu.cea.fr/en/Phocea/Vie_des_labos/Ast/ast.php?t=fait_marquant&id_ast=4888.

This PhD thesis focuses on developing an advanced analysis framework for inspecting nuclear waste containers using muon tomography, particularly the scattering method. Muon tomography, which leverages naturally occurring muons from cosmic rays to scan dense structures, has proven valuable in areas where traditional imaging methods fail. CEA/Irfu, with expertise in muon detectors, seeks to harness AI and Machine Learning (ML) to optimize muon data analysis, particularly to reduce long exposure times and improve image reliability.

The project will involve familiarizing with muography (muon tomography image) principles, simulating muon interactions with waste containers, and developing ML-based data augmentation and image processing techniques. The outcome should yield efficient tools to interpret muon images, enhance analysis speed, and classify container contents reliably. The thesis aims to improve nuclear waste inspection’s safety and reliability by producing cleaner, faster, and more interpretable muon tomography data through innovative analysis methods.

 

Retour en haut