Personal web page : http://irfu.cea.fr/Pisp/esther.ferrer-ribas/
Laboratory link : http://irfu.cea.fr/dedip/index.php
More : https://iaxo.web.cern.ch/content/home-international-axion-observatory
Axions were introduced as the most promising solution in explaining the absence of Charge-Parity symmetry violation in the strong interaction. These neutral, very light particles, interact so weakly with ordinary matter that they could contribute to the Dark Matter. Axion search techniques rely on their interaction with photons. Helioscopes search for axions produced in the solar core by the conversion of plasma photons into axions giving rise to a solar axion flux at the Earth surface, with energy spectrum at the region 1-10 keV.
The International Axion Observatory (IAXO) will achieve a signal-to-background ratio of about 4-5 orders of magnitude better than most sensitive experiments today. BabyIAXO, an intermediate experimental stage of IAXO, will be hosted at DESY (Germany). BabyIAXO is conceived to test all IAXO subsystems (magnet, optics and detectors) at a relevant scale for the final system and thus serve as prototype for IAXO, but at the same time as a fully-fledged helioscope with relevant physics reach in itself, and with potential for discovery. IAXO and BabyIAXO will be equipped with X-ray optics coupled to low background X-ray detectors. The required levels of background are extremely challenging, a factor 10 better than current levels.
The PhD will work on the X-ray detector development in particular of the new generation of Micromegas detectors. The development will be focused on the optimization of the background level by a multi-approach strategy coming from ground measurements, screening campaigns of components of the detector, underground measurements, background models, in-situ background measurements as well as refinement of rejection algorithms. Physics analysis of BabyIAXO data is expected in the last year of the PhD.