PDF
Mesures du champ magnétique intergalactique avec les sursauts gamma
Measures of the intergalactic magnetic field using gamma-ray bursts

Spécialité

Astrophysique

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

21/05/2021

Durée

3 mois

Poursuite possible en thèse

oui

Contact

Belmont Renaud
+33169089808

Résumé/Summary
Ce stage propose de contraindre le champ magnétique intergalactique par la modélisation de la propagation des rayons gamma issus de sursauts (GRB) et l'analyse des futures observations CTA.
This internship proposes to constrain the intergalactic magnetic field by modelling the propagation of gamma rays produced by gamma-ray bursts (GRBs), and analysing future CTA observations.
Sujet détaillé/Full description
Depuis une vingtaine d’années, l’avènement des télescopes Tcherenkov a permis le développement de l’astronomie gamma à très haute énergie (>20GeV), avec des retombées dans beaucoup de domaines de l’astrophysique, et en particulier en cosmologie. La cosmologie gamma repose sur l’absorption, par la lumière infra-rouge des galaxies, des rayons gamma émis par des sources lointaines de l’Univers. Cette absorption est en effet directement liée à l’histoire de la formation stellaire et au modèle cosmologique qui conditionne l’apparition des grandes structures de l’Univers.
L’absorption des rayons gamma par les photons infrarouge produit des électrons et des positrons qui interagissent sur le fond diffus cosmologique et produisent à leur tour des rayons gamma. Ces rayons gamma secondaires peuvent eux-mêmes être absorbés, produisant en cascade de nouvelles paires électron-positron. Ces cascades électromagnétiques se développent dans le milieu intergalactique et possèdent différentes signatures qui sont recherchées dans les données : d’une part, les rayons gamma secondaires, d’énergie plus faible, créent un excès sur la partie à basse énergie du spectre ; d’autre part, le champ magnétique intergalactique (Intergalactic Magnetic Field, IGMF) dévie les particules chargées, produisant un halo diffus autour de la source et un retard dans le temps d’arrivée des rayons gamma secondaires. La recherche de ces signatures dans les observations gamma permet d’étudier ce champ magnétique dont l’origine remonte probablement aux premiers instants de l’Univers. Cette méthode permet d’accéder à des très faibles intensités et à des propriétés à grande échelle, inaccessibles aux mesures traditionnelles de champ magnétique.

Le travail de stage s’intéressera à l’étude des cascades issues des sursauts gamma (GRB) et aux contraintes qu’elles peuvent apporter sur l’IGMF en particulier avec l’observatoire CTA en cours de construction. CTA comportera à terme 19 télescopes sur le site Nord (La Palma, îles Canaries), et 99 sur le site Sud (désert d’Atacama au Chili). Le premier grand télescope de 23 m a commencé sa prise de données laissant espérer plusieurs détections dans les années qui viennent.

L’IGMF a déjà été étudié avec une population de noyaux actifs de galaxie (AGN) qui a permis d’établir des limites inférieures sur l’intensité moyenne du champ (B>10^(-16) G). Les sursauts gamma, très brefs par nature, permettront une approche basée sur les retards temporels, très différente de celle utilisée pour les AGN et donc des contraintes indépendantes et complémentaires sur l’IGMF.

Le travail de ce stage consistera à réaliser des simulations numériques de cascades issues des GRB et à étudier leurs signatures observationnelles. Plus précisément, les cascades simulées seront couplées à la chaine d'analyse développée dans le groupe pour CTA, ce qui permettra d’obtenir les contraintes sur l’IGMF. L’étudiant analysera pour cela plusieurs sursauts gamma observés. Il étudiera dans un premier temps des sursauts détectés par le satellite Fermi jusqu’à une dizaine de GeV, et dont les caractéristiques seront extrapolées au domaine d’énergie de CTA (au-delà de 20 GeV). Puis, il analysera les deux sursauts observées à très haute énergie par les telescopes Tcherenkov HESS et MAGIC (Nature, Nov. 2019).

L’étudiant(e) sera intégré(e) à l’équipe LEPCHE du Département d’Astrophysique du CEA Paris-Saclay. Cette équipe est très impliquée à la fois dans les observations de GRB, ainsi que dans la préparation de futur grand télescope Tcherenkov CTA. Les chercheurs de l’équipe sont en particulier chargés de préparer les futures observations de GRB avec CTA.
In the past 20 years, the advent of Cherenkov telescopes has allowed for the rapid growth of very high energy gamma-ray astronomy, and had provided impacts in many fields of astrophysics including cosmology. Gamma-ray cosmology is based on the absorption of very high energy photons (>100 GeV) from extragalactic sources by infrared photons emitted by stars in galaxies. Such absorption is linked to the history of star formation and to the cosmological model implied in the formation of large-scale structures in the Universe.
The absorption of gamma rays by infrared photons also produces pairs of electrons and positrons that interact with photons from the cosmological microwave background (CMB) and produce more gamma rays. These secondary high energy photons can also be absorbed, generating a cascade of pairs and photons. These electromagnetic cascades develop in the intergalactic medium and provide specific observational signatures that are searched in gamma-ray data. On the one hand, the secondary photons are responsible for an excess emission at lower emission. On the second hand, the intergalactic magnetic field (IGMF) deflects the charged particles, producing an extended halo around point sources and a time delay in the arrival of secondary gamma rays. This large-scale magnetic field is expected to originate from the very first epoch of the cosmic history. The search for these signatures in gamma-ray observations hence allows to probe this relic field at very low intensities, where traditional methods fail.

The work will focus on cascades induced by gamma-ray bursts (GRBs) and on the constrains they can provide on the IGMF. In particular, it will be done in preparation of the future CTA observatory. This array of Cherenkov telescopes will have 19 telescopes in its north site (La Palma, Canary islands) and 99 in its south site (Chili). The first 23m telescope is already operational, promising several GRB detections in the next years.
The IGMF has already be studied using active galactic nuclei (AGN), which has provided lower limits on its intensity (B>10^(-16)G). The very short duration of GRBs will allow for a very different approach, based on time delays, hence for independent and complementary constrains.
The work will consist in performing numerical simulations of gamma-ray induced cascades, using a Monte Carlo simulation code and studying their observational signatures. Namely the simulated cascades will be coupled to the CTA data analysis chain developed in the group in order to predict constrains on the IGMF. To that purpose, the student will analyze several typical GRBs. He/she will first focus on a few interesting events among the many detected at lower energy by Fermi (<10 GeV) and extrapolated to the CTA energy range. He/she will then analyze two GRBs recently observed at very high energy by existing Cherenkov telescopes (HESS and MAGIC collaborations, Nature, Nov. 2019).

The student will work in the LEPCHE team of the Astrophysics Department at CEA Paris-Saclay. The team is strongly involved in GRB observations and in the preparation of CTA in general. More specifically, its researchers are charged with the preparation for GRB observations with CTA.
Mots clés/Keywords
rayons gamma, astroparticules, cosmologie
gamma-rays, astroparticles, cosmology
Compétences/Skills
Modélisation avec des simulations numériques Monte Carlo Analyse de données
Modelling with Monte Carlo numerical simulations, Data analysis
Logiciels
fortran, python

 

Retour en haut